Jump to content
Jemima

Computer Program Adjusts Blue Light to Time of Day

Recommended Posts

Jemima

Here's a link to a free download of software that adjusts the blue light on a monitor according to the time of day. It's also possible to custom adjust it if you don't care for the results. Here's the link:

 

http://stereopsis.com/flux/

 

My computer screen turns slightly pink-ish at sunset, which I'm finding a bit difficult to get used to, but it beats nothing at all. I bought the amber glasses and don't like them a whole lot as they seem to darken the entire room, and especially the keyboard. I've made some spectacular typos wearing them.

Share this post


Link to post
Share on other sites
Altostrata

This is a great idea. I just downloaded this app and it's already softened the light from my screen.

Share this post


Link to post
Share on other sites
Petunia

Thank you Jemima, I just downloaded it too, this feels more gentle.

Share this post


Link to post
Share on other sites
Skyler

Me too Jemima...it's up and running, and my screen glare is much less.  Thanks!

Share this post


Link to post
Share on other sites
UnfoldingSky

Oh awesome, I've wanted something like this for a long time now. Thanks Jemima!

Share this post


Link to post
Share on other sites
ladybug

I love this program, I've been using it for over a year now. Don't worry, you get used to the pink. In fact, I've gotten so used to it that now if it's turned off for some reason I can tell immediately because the screen seems WAY too bright.

Share this post


Link to post
Share on other sites
Altostrata

I've got the candlelight effect turned on at night. Definitely less stimulating.

 

Recommend this program to all!

Share this post


Link to post
Share on other sites
Nadia

Hi everyone,

 

One of the recommendations given for people with insomnia is to reduce the amount of light in the evenings a couple of hours before bedtime. Often this means no more computer or iPad or TV use. I have found this makes an enormous difference in how quickly I can get to sleep and how well I sleep.

 

However, often I have to work late no matter what, and a few friends recommended this app for those times:

 

http://justgetflux.com/

 

There are desktop and mobile versions, and best of all, it's free! (The iPhone and iPad versions require jailbreaking, which is unfortunate, but the desktop version can be used without modifications.)

 

What it does is change the color temperature of the screen to reduce the amount of blue light, which is the wavelength that most interferes with melatonin production. It's not a good option if you have to do color-critical work like graphic design or video color correction, of course, but for everything else it should not be a problem. You can even set it to turn on gradually so your eyes make the shift and you won't notice that much of a difference.

 

I hope it helps!

 

N.

Share this post


Link to post
Share on other sites
Karma

I find that I need to shut down the computer no later than 8:00 PM in order to avoid disrupting my sleep due to the computer's bright light.  I found this computer program called F.lux that adjusts the screen intensity at sundown to mimic natural lighting.  I've had it on my computer since February and I believe it is helping me.

 

Here is an article on PCWorld about it: http://www.pcworld.com/article/2056895/review-f-lux-makes-your-computer-usable-at-night.html

 

At sundown where you live it adjusts the light to about half the intensity it is during the day.  It seems to be kind of pink-ish after the switch to evening lighting and it takes a little getting used to.  But what I have found is that by having this program that adjusts my lighting I am having less disruption of sleep due to computer exposure in the evening.

 

I find that my computer is a little challenged when figuring out its lighting in the morning when I first open it - the screen flickers and then it finds its level.  There are FAQs and if you find that you don't like F.lux you can remove it from your computer.  If you computer has adapted to the lighting changes with F.lux, they have an FAQ for resolving that and completely removing the affects of the program.

 

Karma

Share this post


Link to post
Share on other sites
GiaK

I use flux...it works great

Share this post


Link to post
Share on other sites
Altostrata

Me, too -- but I find I still need to get off the computer by 5 p.m. or so.

Share this post


Link to post
Share on other sites
Nadia

I've been using f.lux and it helps, but like Alto, I think I have to turn off the computer at least a couple of hours before bedtime and do a routine to help me wind down. Going for a walk, reading, stretching, etc. I think it's not just the blue light, but the engagement that a computer requires, that affects us.

Share this post


Link to post
Share on other sites
cymbaltawithdrawal5600

From the f.lux site:

 

Trouble sleeping?

 

If you have sleep trouble or you're trying to learn more about sleep in general, we recommend understandingsleep.org.

Study:

 

Reading on a tablet vs. book

 

In 2014, a new study was published in PNAS (full text) that compares the effects of reading an iPad before bed, versus a regular paper book.

AMA Report In 2012, the American Medical Association's Council on Science and Public Health made this recommendation:

 

Blue Light Affects Sleep (and here's why)"Recognizes that exposure to excessive light at night, including extended use of various electronic media, can disrupt sleep or exacerbate sleep disorders, especially in children and adolescents. This effect can be minimized by using dim red lighting in the nighttime bedroom environment."

 

We know that night-time exposure to blue light keeps people up late. We believe that f.lux adjusts colors in a way that greatly reduces the stimulating effects of blue light at night.

 

To understand the effects of f.lux on sleep, we've spoken with some researchers, and we've read a whole lot of papers.

 

The science that explains why blue light keeps you up was begun many years ago in the study of bird migration, and it continued in humans with the discovery of a new photoreceptor in the eye, called Melanopsin. Many are familiar with the "rods and cones" that provide our visual capabilities, but it was only about 15 years ago that retinal ganglion cells containing melanopsin, which are sensitive to a narrow band of blue light in the 460-480nm range, were discovered, and their unique effect on sleep was investigated.

The experimental research suggests that an average person reading on a tablet for a couple hours before bed may find that their sleep is delayed by about an hour. Clearly, the details are complicated, but that's why we get to cite so many very interesting papers.

 

Popular press coverage of blue light research

 

In Eyes, a Clock Calibrated by Wavelengths of Light

cites work by Cajochen et al in the May issue of The Journal of Applied Physiology.

Christian Cajochen did the first work we know of that uses real LED displays and measures them against older computer monitors. Many studies before this used light sources that you could believe were "like" these newer displays, but this paper tests the exact kind of backlight that we all use many hours a day.

 

Blue Light

 

David C. Holzman does a survey paper on the effects of blue light, with citations as early as 1958.

 

What's in a Color? The Unique Human Health Effects of Blue Light Holzman DC 2010. What's in a Color? The Unique Human Health Effects of Blue Light. Environ Health Perspect 118:A22-A27. doi:10.1289/ehp.118-a22

 

NIH-Funded research

 

NIH-funded research is available in its full text online. If you've tried to search for journal articles and read them online, you know that a large number of scientific journals today are difficult to access, except from within an institution that subscribes. The following bibliography includes the NIH-published versions of some of the work done at Brigham and Women's Hospital (Harvard Medical School).

 

Exposure to Room Light before Bedtime Suppresses Melatonin Onset and Shortens Melatonin Duration in Humans Joshua J. Gooley, Kyle Chamberlain, Kurt A. Smith, Sat Bir S. Khalsa, Shantha M. W. Rajaratnam, Eliza Van Reen, Jamie M. Zeitzer, Charles A. Czeisler, Steven W. Lockley J Clin Endocrinol Metab. 2011 March; 96(3): E463–E472. Published online 2010 December 30. doi: 10.1210/jc.2010-2098

 

The human circadian system adapts to prior photic history Anne-Marie Chang, Frank A J L Scheer, Charles A Czeisler J Physiol. 2011 March 1; 589(Pt 5): 1095–1102. Published online 2011 January 10. doi: 10.1113/jphysiol.2010.201194 PMCID: PMC3060589

 

High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. Lockley SW, Brainard GC, Czeisler CA. J Clin Endocrinol Metab. 2003 Sep;88(9):4502-5. PMID: 12970330 [PubMed - indexed for MEDLINE]

 

Effect of Light on Human Circadian Physiology Jeanne F. Duffy, Charles A. Czeisler. Sleep Med Clin. Author manuscript; available in PMC 2010 June 1. Published in final edited form as: Sleep Med Clin. 2009 June; 4(2): 165–177. doi: 10.1016/j.jsmc.2009.01.004 PMCID: PMC2717723

 

Suppression of melatonin secretion in some blind patients by exposure to bright light. Czeisler CA, Shanahan TL, Klerman EB, Martens H, Brotman DJ, Emens JS, Klein T, Rizzo JF 3rd. N Engl J Med. 1995 Jan 5;332(1):6-11. PMID: 7990870 [PubMed - indexed for MEDLINE]

A phase response curve to single bright light pulses in human subjects Sat Bir S Khalsa, Megan E Jewett, Christian Cajochen, Charles A Czeisler J Physiol. 2003 June 15; 549(Pt 3): 945–952. Published online 2003 April 25. doi: 10.1113/jphysiol.2003.040477 PMCID: PMC2342968

 

Amplitude Reduction and Phase Shifts of Melatonin, Cortisol and Other Circadian Rhythms after a Gradual Advance of Sleep and Light Exposure in Humans Derk-Jan Dijk, Jeanne F. Duffy, Edward J. Silva, Theresa L. Shanahan, Diane B. Boivin, Charles A. Czeisler PLoS One. 2012; 7(2): e30037. Published online 2012 February 17. doi: 10.1371/journal.pone.0030037

 

Sex difference in the near-24-hour intrinsic period of the human circadian timing system Jeanne F. Duffy, Sean W. Cain, Anne-Marie Chang, Andrew J. K. Phillips, Mirjam Y. Münch, Claude Gronfier, James K. Wyatt, Derk-Jan Dijk, Kenneth P. Wright, Jr., Charles A. Czeisler Proc Natl Acad Sci U S A. 2011 September 13; 108(Supplement_3): 15602–15608. Published online 2011 May 2. doi: 10.1073/pnas.1010666108

 

Uncovering Residual Effects of Chronic Sleep Loss on Human Performance Daniel A. Cohen, Wei Wang, James K. Wyatt, Richard E. Kronauer, Derk-Jan Dijk, Charles A. Czeisler, Elizabeth B. Klerman Sci Transl Med. Author manuscript; available in PMC 2010 July 13. Published in final edited form as: Sci Transl Med. 2010 January 13; 2(14): 14ra3. doi: 10.1126/scitranslmed.3000458 PMCID: PMC2892834

 

The Impact of Sleep Timing and Bright Light Exposure on Attentional Impairment during Night Work Nayantara Santhi, Daniel Aeschbach, Todd S. Horowitz, Charles A. Czeisler J Biol Rhythms. Author manuscript; available in PMC 2009 August 1. Published in final edited form as: J Biol Rhythms. 2008 August; 23(4): 341–352. doi: 10.1177/0748730408319863 PMCID: PMC2574505

 

Short-Wavelength Light Sensitivity of Circadian, Pupillary, and Visual Awareness in Humans Lacking an Outer Retina Farhan H. Zaidi, Joseph T. Hull, Stuart N. Peirson, Katharina Wulff, Daniel Aeschbach, Joshua J. Gooley, George C. Brainard, Kevin Gregory-Evans, Joseph F. Rizzo, III, Charles A. Czeisler, Russell G. Foster, Merrick J. Moseley, Steven W. Lockley. Curr Biol. 2007 December 18; 17(24): 2122–2128. doi: 10.1016/j.cub.2007.11.034 PMCID: PMC2151130

 

Entrainment of the human circadian pacemaker to longer-than-24-h days Claude Gronfier, Kenneth P. Wright, Jr., Richard E. Kronauer, Charles A. Czeisler Proc Natl Acad Sci U S A. 2007 May 22; 104(21): 9081–9086. Published online 2007 May 14. doi: 10.1073/pnas.0702835104 PMCID: PMC1885631

 

Decreased sensitivity to phase-delaying effects of moderate intensity light in older subjects Jeanne F. Duffy, Jamie M. Zeitzer, Charles A. Czeisler Neurobiol Aging. Author manuscript; available in PMC 2008 May 1. Published in final edited form as: Neurobiol Aging. 2007 May; 28(5): 799–807. Published online 2006 April 18. doi: 10.1016/j.neurobiolaging.2006.03.005 PMCID: PMC1855248

 

Efficacy of a single sequence of intermittent bright light pulses for delaying circadian phase in humans Claude Gronfier, Kenneth P. Wright, Richard E. Kronauer, Megan E. Jewett, Charles A. Czeisler Am J Physiol Endocrinol Metab. Author manuscript; available in PMC 2009 October 14. Published in final edited form as: Am J Physiol Endocrinol Metab. 2004 July; 287(1): E174–E181. Published online 2004 March 23. doi: 10.1152/ajpendo.00385.2003 PMCID: PMC2761596

Intrinsic period and light intensity determine the phase relationship between melatonin and sleep in humans Kenneth P. Wright, Claude Gronfier, Jeanne F. Duffy, Charles A. Czeisler J Biol Rhythms. Author manuscript; available in PMC 2009 July 27. Published in final edited form as: J Biol Rhythms. 2005 April; 20(2): 168–177. doi: 10.1177/0748730404274265 PMCID: PMC2714089

 

Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression Jamie M Zeitzer, Derk-Jan Dijk, Richard E Kronauer, Emery N Brown, Charles A Czeisler J Physiol. 2000 August 1; 526(Pt 3): 695–702. doi: 10.1111/j.1469-7793.2000.00695.x PMCID: PMC2270041

Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans Kenneth P. Wright, Jr., Rod J Hughes, Richard E. Kronauer, Derk-Jan Dijk, Charles A. Czeisler Proc Natl Acad Sci U S A. 2001 November 20; 98(24): 14027–14032. doi: 10.1073/pnas.201530198 PMCID: PMC61161

 

Phase-shifting human circadian rhythms: influence of sleep timing, social contact and light exposure J F Duffy, R E Kronauer, C A Czeisler J Physiol. 1996 August 15; 495(Pt 1): 289–297. PMCID: PMC1160744

 

Temporal dynamics of late-night photic stimulation of the human circadian timing system Zeitzer JM, Khalsa SB, Boivin DB, Duffy JF, Shanahan TL, Kronauer RE, Czeisler CA. Am J Physiol Regul Integr Comp Physiol. 2005 Sep;289(3):R839-44. Epub 2005 May 12. PMID: 15890792 [PubMed - indexed for MEDLINE]

 

Adaptation of human pineal melatonin suppression by recent photic history Smith KA, Schoen MW, Czeisler CA. J Clin Endocrinol Metab. 2004 Jul;89(7):3610-4. Erratum in: J Clin Endocrinol Metab. 2005 Mar;90(3):1370. PMID: 15240654 [PubMed - indexed for MEDLINE]

 

Dynamic resetting of the human circadian pacemaker by intermittent bright light. Rimmer DW, Boivin DB, Shanahan TL, Kronauer RE, Duffy JF, Czeisler CA. Am J Physiol Regul Integr Comp Physiol. 2000 Nov;279(5):R1574-9. PMID: 11049838 [PubMed - indexed for MEDLINE]

 

Human circadian pacemaker is sensitive to light throughout subjective day without evidence of transients. Jewett ME, Rimmer DW, Duffy JF, Klerman EB, Kronauer RE, Czeisler CA. Am J Physiol. 1997 Nov;273(5 Pt 2):R1800-9. PMID: 9374826 [PubMed - indexed for MEDLINE]

 

Exposure to bright light and darkness to treat physiologic maladaptation to night work. Czeisler CA, Johnson MP, Duffy JF, Brown EN, Ronda JM, Kronauer RE. N Engl J Med. 1990 May 3;322(18):1253-9. PMID: 2325721 [PubMed - indexed for MEDLINE]

 

Mental activation and sleep

 

Some EEG studies of color effect on the brain have been done. One of the earlier ones we found is cited here.

 

 

From Effect of Illuminance and Color Temperature on Lowering of Physiological Activity, Noguchi H, Sakaguchi T.

These results suggest that low color temperature light creates a smooth lowering of central nervous system activity, and that low color temperature illumination can be used effectively in a bedroom or other such environment where it is desirable to facilitate lowered physiological activity."...we surmise that the effect of color temperature is greater than that of illuminance in an ordinary residential bedroom or similar environment where a lowering of physiological activity is desirable, and we therefore find the use of low color temperature illumination more important than the reduction of illuminance. Subjective drowsiness results also indicate that reduction of illuminance without reduction of color temperature should be avoided."

 

From Effect of Color Temperature of Light Sources on Slow-wave Sleep", Tomoaki Kozaki [1], Shingo Kitamura [2], Yuichi Higashihara [2], Keita Ishibashi [1], Hiroki Noguchi [3] and Akira Yasukouchi [1]


 

1. Department of Physiological Anthropology, Faculty of Design, Kyushu University2. Department of Ergonomics, Kyushu Institute of Design3. Matsushita Electric Works, Ltd.
Seven healthy males were exposed to the light sources of different color temperatures (3000 K, 5000 K and 6700 K) for 6.5 h before sleep. The horizontal illuminance level was kept at 1000 lux. Subjects slept on a bed in near darkness (<10 lux) after extinguishing the light, and polysomnograms recorded the sleep parameters. In the early phase of the sleep period, the amount of stage-4 sleep (S4-sleep) was significantly attenuated under the higher color temperature of 6700 K compared with the lower color temperature of 3000 K. Present findings suggest that light sources with higher color temperatures may affect sleep quality in a view that S4-sleep period is important for sleep quality.

Empirical performance studies

 

 

 

There is tons of research on human performance based on sleep, and some interesting research based on mental activation (and productivity) when cooler light colors are used in the work environment.

 

 

From
"The effect of high correlated colour temperature office lighting on employee wellbeing and work performance", Peter R Mills (1,2) , Susannah C Tomkins (1) and Luc JM Schlangen (3)

 

 
The amount of blue light in the spectrum of light sources increases with increasing colour temperature. So far a number of studies have investigated the effects of the colour temperature of lighting on mental activity, the central nervous system and alertness. These studies have demonstrated that higher colour temperatures (7500 K versus 3000 K) are more activating from the viewpoint of mental activity level [12]. Both the parasympathetic and sympathetic nervous systems are thought to be enhanced under higher colour temperature conditions. [13] and drowsiness has been observed to be higher under lower colour temperature lighting when comparing 3000 K with 5000 K [14].

From http://www.springerlink.com/content/g0882155n2838807/

 

"Effects of indoor lighting (illuminance and spectral distribution) on the performance of cognitive tasks and interpersonal behaviors: The potential mediating role of positive affect"

 

 

General blue light notes

 

In Study 2, subjects exposed to warm white light reported stronger preferences for resolving interpersonal conflicts through collaboration and weaker preferences for resolving conflicts through avoidance than subjects exposed to cool-white light. Additionally, illuminance and spectral distribution (color) interacted to influence subjects' self-set goals on a clerical coding task. In Study 3, receipt of a small, unexpected gift and exposure to warm-white light both increased the amount of time subjects were willing to donate as unpaid volunteers. In addition, in the absence of a gift, subjects volunteered more time under low than under high illuminance.

 

 

Terman and Terman report in "Light Therapy for Seasonal and Nonseasonal Depression: Efficacy, Protocol, Safety, and Side Effects" in CNS Spectrums:

 

Recent attention has focused on the blue region, which actively suppresses melatonin production (23) and elicits circadian rhythm phase shifts. (24, 25) In a comparison of blue light with red light of lower intensity (designed as a placebo control), the antidepressant response to blue was superior, similar to that seen for white light in other studies. (26)

 

23. Brainard GC, Hanifin JP, Greeson JM, et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci. 2001;21:6405-6412.

24. Wright HR, Lack LC, Kennaway DJ. Differential effects of light wavelength in phase advancing the melatonin rhythm. J Pineal Res. 2004;36:140-144.

25. Warman VL, Dijk DJ, Warman GR, Arendt J, Skene DJ. Phase advancing human circadian rhythms with short wavelength light. Neurosci Lett. 2003;342:37-40.

Share this post


Link to post
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


×
×
  • Create New...